МОДЕЛЬ НЕЗАВИСИМОЙ ПАРАЛЛЕЛЬНОЙ ЭВОЛЮЦИИ - Цихлиды. Общий раздел - Форум Cichlids.RU Перейти к содержанию

МОДЕЛЬ НЕЗАВИСИМОЙ ПАРАЛЛЕЛЬНОЙ ЭВОЛЮЦИИ


Рекомендуемые сообщения

ЦИХЛИДЫ — ЖИВАЯ МОДЕЛЬ НЕЗАВИСИМОЙ ПАРАЛЛЕЛЬНОЙ ЭВОЛЮЦИИ

Елена Наймарк

Современные эволюционисты придают огромное значение выяснению механизмов конвергенций — сходных признаков, сформировавшихся независимым образом. Параллелизмы проясняют генетическую основу внешних проявлений признаков, помогают составить четкое представление о соотношении адаптаций и филогенезов. Наиболее яркие примеры таких параллелизмов дают пресноводные рыбы цихлиды. Они представлены целыми букетами видов в разных водоемах Африки, Центральной и Южной Америки. У многих из этих видов сформировались независимо конвергентные признаки. Их генетическому анализу посвящена недавняя работа группы специалистов из Швейцарии.

«Элементы» вновь возвращают читателя к теме видообразования у африканских рыб цихлид . На примере цихлид оказалось исключительно удобно изучать механизмы эволюции: во-первых, это пресноводная группа, а значит, они развиваются в относительно замкнутых (по сравнению с океаном, конечно) системах; во-вторых, они эволюционируют в озерах с известной геологической историей, а это хорошая подсказка для определения стартовой точки эволюции; в-третьих, цихлиды неплохо выживают в лабораторных условиях и поэтому с ними возможны всякие эксперименты. Помимо этого, в каждом из великих африканских озер — Малави, Танганьика и Виктория — сосредоточены сотни эндемиков, для которых уверенно реконструирована независимая генеалогия. Эндемичные виды цихлид образовались и в других озерах поменьше, и они также оказываются в фокусе научного интереса.

Поэтому цихлиды стали излюбленным объектом изучения адаптивной радиации — эволюционного приспособления к различным экологическим нишам. «Великий эволюционный эксперимент Природы» — так именуют исследователи африканских цихлид. Эмилия Сантуш и Уолтер Зальцбургер из Зоологического института при Базельском университете на страницах журнала Science подводят некоторые важные итоги исследования этой живой модели эволюции и упоминают ряд значимых работ по этой теме.

Недавнее исследование большого массива данных по 46 африканским озерам позволило Кэтрин Вагнер с коллегами выявить факторы, значимые для эволюции цихлид. Эти исследователи проделали весьма кропотливую работу, сопоставив множество экологических, морфологических и поведенческих признаков с темпами эволюции цихлид в разных озерах. Темпы видообразования оценивались по числу эндемиков в каждом из озер. Авторы учли, что одна и та же филогенетическая клада в разных озерах порождала разное число эндемиков. Предположительно, эта разница определялась какой-то озерной спецификой. Но какой?

Самые наглядные примеры параллельной эволюции можно увидеть среди пресноводных цихлид. Один из них — независимое появление губастых представителей — всесторонне изучен командой специалистов из Швейцарии. Один из объектов исследования, Lobochilotes labiatus;Lobochilotes-labiatus.jpg

Темпы видообразования цихлид в 46 африканских озерах: отмечено, сколько в каком озере образовалось эндемиков (ноль, не менее двух, не менее пяти).

Оказалось, что на темпы видообразования влияют, во-первых, возраст озера (чем старше, тем вероятнее появление эндемиков), во-вторых, глубина озера (чем глубже, тем больше вероятность дивергенции), в-третьих, различия в окраске у самок и самцов (если самцы и самки одинаково окрашены, то видообразование маловероятно). Что ж, эти выводы не должны удивить эволюциониста, так как они утверждают вполне тривиальные вещи — что для эволюции нужно время, что разнообразие экологических обстановок способствует видообразованию и что половой отбор является мощным фактором видообразования. Такой превосходный объект, как цихлиды, позволяет увидеть много, много больше. Например, можно попытаться выяснить, как генотип связан с фенотипом или как происходит параллельная эволюция в разных линиях.

 

afrikan-cichlids.jpg

Первая из этих задач «архиважная» для понимания механизмов эволюции, но пока прочитано не так уж много геномов цихлид. Однако главное, что обнаруживается при анализе геномов рыб в одном озере, — это высокое сходство ДНК у этих внешне различных видов рыб. В своей эволюционной истории они разошлись так недавно, что видовые различия в геноме не успели накопиться и стабилизироваться. Наибольшие различия в геноме относятся к регуляторным последовательностям, таким как микроРНК, а не к смысловым, кодирующим белки. Это означает, что быстрая адаптация шла за счет тонкой настройки регуляции морфогенеза.

Вторая тема — генетические механизмы параллельной эволюции. Она недавно превосходно проиллюстрирована на примере появления одного из фенотипов цихлид — рыб с толстыми губами. Этот пример разобрали также Марко Коломбо и его коллеги из Базельского университета и Национального музея естественных наук в Мадриде. Выбранный признак — толстые губы — встречается не только у африканских цихлид (в данном случае из озера Танганьика), но и у центральноамериканских (из озера Манагуа в Никарагуа). Африка с Америкой потеряли связь около 100 млн лет назад, поэтому можно исключить и параллельное наследование признака от единого предка, и случайное расселение носителей признака, а вместо этого сосредоточиться на собственно конвергентной эволюции.

Схожие по экстерьеру тонкогубые (вверху) и толстогубые (внизу) цихлиды в озере Манагуа (Центральная Америка) и в озере Танганьика (Восточная Африка). Изображение из обсуждаемой статьи в Science.

 

 

 

 

cichlids-3-600.jpg

Как выяснилось, толстые мясистые губы у цихлид вместе с некоторыми другими экстерьерными признаками возникали в ответ на переход на специфическую диету — беспозвоночных с твердыми панцирями. Какие гены изменились, чтобы сформировать мясистые губы? В качестве стартового массива данных зоологи выявили все РНК в тканях рыбьих губ у толстогубых и тонкогубых цихлид и в результате насчитали около 140 генов, по которым тонкогубые отличаются от толстогубых. Затем из этого широкого набора кандидатов были придирчиво выбраны 6 генов. Нужно было, чтобы гены были связаны функционально с морфогенезом тканей губ и чтобы количество РНК у тонкогубых и толстогубых особей различалось посильнее и почетче. Да еще учли разницу в уровнях экспрессии генов в губах рыб. И всю процедуру сравнения тонкогубых и толстогубых фенотипов проделали и для Танганьики, и для Манагуа. Три гена из шести были и в том и в другом наборах и удовлетворяли выбранным параметрам. Это гены, которые отвечают за образование рыхлой соединительной и жировой ткани. А раз нашлись сходные генетические различия, то авторы закономерно заключили, что конвергентное появление полезного признака произошло из-за изменения сходных генов.

Уровни экспрессии генов, для которых выявлены четкие различия в РНК для тонкогубых и толстогубых фенотипов. Astatotilapia burtoni (AB, тонкогубый фенотип); Lobochilotes labiatus (LL, толстогубый) из Танганьики; Amphilophus citrinellus (AC, тонкогубый); Amphilophus labiatus (AL, толстогубый) — из Манагуа; экспрессия генов получена при помощи количественной ПЦР в реальном времени (*P < 0.05; ***P < 0.01). По этим результатам выбраны три гена с повышенной экспрессией у толстогубых особей: Actb, Cldn7, Copb. Изображение из обсуждаемой статьи в Molecular Ecology

По-видимому, для цихлид существует не так уж много способов сформировать конкретный признак, поэтому если возникает в нём необходимость, то в оборот берутся одни и те же гены. В целом, сейчас известно больше примеров, иллюстрирующих принцип «сходный признак — сходные гены», чем «сходный признак — разные гены». Примеры первого принципа можно найти в заметках Найден ген, отвечающий за эволюцию окраски у бабочек» или Параллелизмы — результат быстрой эволюции сенсорных рецепторов. Складывается впечатление, что первый из принципов реализуется чаще в небольших компактных таксономических группах, второй — у организмов, далеко разошедшихся на эволюционном древе, а также у бактерий.

http://nemo.by/tsihlidy-zhivaya-model-nezavisimoj-parallelnoj-evolyutsii/

Ссылка на комментарий
Поделиться на другие сайты

  • 1 год спустя...

https://turnercichlid.weebly.com/projects.html

Параллельная эволюция в кратерных озерах: озеро Массоко - не единственное кратерное озеро в южной Танзании, а многие другие близлежащие озера содержат тесно связанные цихлиды гаплохромина. Несколько других озер, похоже, содержат формы с желтоватыми самцами, живущими на мелкой воде, и образуются с более темными самцами, живущими в более глубокой воде. Это может представлять разные этапы подобного рода видообразования. Мы начали рассматривать морфологические различия между различными формами внутри и были озерами, начиная с проекта  Эмма Тирнан. Д-р Henrik Kusche,из Германии, планирует исследовать это более подробно, дополнительно изучая различия в экологии и диете среди морфотипов. Мы надеемся продолжить это с подробными молекулярными исследованиями. Предварительный анализ Ричарда Чаллиса  подтверждает идею о том, что эти формы расходятся на месте в каждом кратерном озере, что позволяет нам смотреть на повторяющиеся события видообразования. 
Фото: бледные и темные самцы кратерные озера  (по часовой стрелке слева вверху): озеро Итамба, озеро Иламба, озеро Кингири, озеро Массоко. 

1899250.jpg

Ссылка на комментарий
Поделиться на другие сайты

Присоединяйтесь к обсуждению

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Гость
Ответить в этой теме...

×   Вставлено с форматированием.   Вставить как обычный текст

  Разрешено использовать не более 75 эмодзи.

×   Ваша ссылка была автоматически встроена.   Отображать как обычную ссылку

×   Ваш предыдущий контент был восстановлен.   Очистить редактор

×   Вы не можете вставлять изображения напрямую. Загружайте или вставляйте изображения по ссылке.

  • Последние посетители   0 пользователей онлайн

    • Ни одного зарегистрированного пользователя не просматривает данную страницу
×
×
  • Создать...